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Abstract. A tule for environmentally dependent modification of the neuronal state is cxamined. Under
the rule, the ncuron sclects a trigger feature that matches either a particular pattern in the stimulus set,
or the most common pattern component, depending on a certain parameter. Thus a ncuron may
cvolve to respond to its stimulus environment in one of two capacitics, namely specification or
generalization. Ncurons of the former variety are labelled “S-cells®; and those of the latter, *G-cells”. In
the model, synaptic modification is modulated by two postsynaptic mechanisms, which act
antagonistically to strengthen or weaken the synaptic connectivities. The functional dependence of
these mechanisms on the postsynaptic activity is shown to determine whether the neuron acts as an S-
cell or a G-¢cell. A circuit is proposed for a module that consists of a G-cell and several Sells sharing
a common set of inputs. By inhibiting the G-cells, the S-cell acts as a contrast-enhancing element,
increasing their specificitics for individual patterns in the stimulus sct. The output from the module is

a recoded representation of the environment with respect to its general and distinctive features.
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,‘ 1. Introduction
s
:‘»j:, 1.1. Trigger features
:-: Barlow (1972) expresses the importance of single ncuron response characteristics as per-
"l::'r: ceptual substrates. He stresses the role of a sensory neuron’s “trigger features” which, according
to that paper’s third proposition,' “are matched to redundant patterns of stimulation by experi-
ence as well as by developmental processes.” The present paper is concerned with the following
question: To which of the redundant patterns in a ncuron’s stimulus environment is its trigger
» featurc(s) matched, and how (in a mathematical sensc) can this match evolve with experience?
[E o Several theories describe the evolution of neuronal trigger features (e.g. von der Malsburg,
'_M 1973 ; Perez et al., 1975 ; Grossberg, 1976 ; Amari and Takeuchi, 1978). In the present paper, a
[‘9“ scheme for ncuronal plasticity is put forward in which neurons dynamically adapt to their indi-
- vidual stimulus environments such that some tune to particular patteras (specification) while
;.".‘".L others tune to the most prevaleat pattern component (generalization). The model extends the
o theory of Bienenstock et al. (1982) for development of orientation sclectivity in visual cortex to
.:‘_: yicld cither maximization or minimization of selectivity, depending on the relation between
:h. two antagonistic mechanisms that postsynaptically modulate synaptic plasticity. If the func-
) tions are of the same form, this relation can be expressed in terms of a (fixed) neuronal parame-

‘et. By dcveloping response characteristics to have low selectivity, the neuron gencralizes by
aatching its trigger fcature to the component most common among the stimuli ia its environ-

ment, that componens being a redundant pattern of stimulation as in Barlow’s third dogma. On

the other hand, by pursuing a highly specific response function, the trigger fcature evolves to
«ch a particular pattem, while ignoring a maximally broad range of the remainder of the
stimulus set. Thus some neurons pursue common fcatures and some pursue distinctive features

in the environment.

gartow’s paper consists of five speculative propositions (dogmas) which he supports with persuasive arguments
and substantial experimental data.
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1.2. Physiological evidence

The development of highly selective neurons in mammalian visual cortex (particularly in

!

cats and monkeys) has been extensively studied under variously restrictive rearing conditions ]
and has been shown to depend critically on the visual eavironment (for a comprehensive review

of the litcrature, sce Movshon and Van Sluyters, 1981). The stimulus parameters over which
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sclectivity has been shown to develop have generally been orientation and spatial frequency.

However Gross ct al. (1972) found ncurons in the pre-striate cortex of macaque monkeys tuned

PRSI~ -

to features of higher specificity such as hands and faces.
[
4

Cortical neurons exhibiting low or zero selectivity in the orientation domain have also

been obscrved. These are particularly common in layer 4 of monkey striate cortex (Hubel and ]

Wiesel, 1977). If such ncurons are present in the cat, they are certainly less common. Kelly
and van Essen (1974) report symmetric receptive ficlds in some units but classify them as geni-

culate affcrents. Palmer and Davis (1981), on the other hand, give evidence that nonsclective

cortical neurons exist in cat visual cortex, but are rare.?

?. The model

This section includes the formal description of the model and some analysis of its struc-

v

ture. No argument is presented in this paper to motivate the mathematics. Interested readers

-
E{ «id consult Cooper et al (1979) and Bienenstock et al (1982). Vector quantities appear in
E; J1d type and are specificd by superscripts. Components of vectors are not in boldface and are
[" identified by subscripts. Let d,(r) label the i-th stimulus component, a measure of the activity
?‘ of the i-th affcrent at time ¢. Comresponding to each component is a synapsc of strength
-

: my(¢). Therc are N components to both d and m, hence they are both vectors in N-

space, Or synapse space. A stimulus eavironment refers to a probability density for d in N-space.

zln this study of singlc neuron response properties in cortci, 13 units from a total of 257 were found not to be :
orientationselective. On the basis of their response properties, 9 were thought to be geniculocortical ([.GN Y-cell) l
afferents. Palmer and Davis conclude that the remaining four are nonselcctive cortical neurons.
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2.1. The transfer function

Let the net integrated depolarization x(¢) be the thresholded lincar expression:

x(t) = max [0 , glm,(:)d,(r) 1)
The response frequency c (x) of the neuron is thought to be increasing in x and linear in some
region, but with nonlincarities for x low (the firing threshold) and x high (maximum firing
rate). Since x rather than ¢ is used in the learning rule, the precise form of ¢ (x) is not impor-
tant. The input-output relation is determined by the synaptic weights m,, hence the input

activity levels d, are tcrmed presynaptic and the output activity x (or c) is termed postsynaptic.

A ncuronal variable, g(¢), is involved in the synaptic plasticity rule and will be defincd
later. Together, the synapse vector m and the value q(¢) make up the newronal state (m,q), an
(N+1)-dimensional quantity. For simplicity, the components m; function as "ideal synapses”
(Nass and Cooper, 1975) capable of changing sign. A trcatment is given in the discussion (sec-

tion 4.2.2) in which the signs of the synaptic weights does not change.

2.2. The modification rule

The rule for neuronal plasticity describes the changes in m and g as time derivatives:

m(1) = &(x,q)d(r) (2a)
q(t) =PBolx.q)x(r) ; B>0 (2b)
where  &(x.,q) = o3(x)—q0(x) (2)

The postsynaptic’ modulatory function &(x.q) is given in terms of ¢ and two continuous,
monotone increasing functions of x: o(x), and o4(x). To complcte the rule, the following
restrictions are imposed. The function ¢ is subject to the condition &(0,9)=0 for all ¢>0.
Cortsequently, the two functions o; and ¢, must cach vanish for x=0. Also, for any fixed

value ¢>0, ¢ and o, are to be such that there exist at most one other value x>0 at which

3Rules for synsptic modification arc often expressed as the product of a function of the presynaptic activity
and a function of the postsynaptic activity. This approach dates back to Thorndike’s (1913) “Law of Use” and I{ebb’s
(1949) “Neurophywiological Postulate®, but has not been experimentally verified until recently (Levy and Steward,
1979; Rauschecker and Singer, 178); Singer, 1982; Singer and Rauschecker, 1982).
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&(x,4)=0. The paramecter B specifics a rate constant for ¢ relative to m. In the simulations

below, B has been set to unity.

2.2.1. Paralle]l modification

Consider the above equation (2a) for m and note that it is linear in the stimulus d(t).
The modification to m induced by a given stimulus is thus parallel or antiparailel to d. Of all
possible input stimuli of a given magnitude, the response to the one in the direction of that
stimulus d is most greatly affected by the change in m. Thercfore parallel modification (linear-
ity of m in d) has the following behavioral implication for a system: learning induced by a par-
ticular stimulus more greatly influences future responses to that stimulus than to others of the same

magnitude.

The sign of the function ¢ dctcrmines whether the synapses get stronger or weaker - i.c.
whether m is parallel or antiparallel to d. For a given valuc of ¢, ¢ has at most two zeros in x,
one of them being x=0. Thus the sign of ¢ can vary over x in four ways, depending on the
value of g. Two of thesc are illustrated in Figure 1a in which for ¢ sufficiently small or large
and x> 0, & is respectively positive or negative definite. For intermediate values of g, ¢ is first
positive and then negative (Figure 1b) or vice versa (Figure Ic). These last two situations can
be labelled by the sign of the partial derivative ¢, at the point x =0(q)> 0 where $(8(q).¢)=0.
That sign depends strictly on the forms of o,(x) and o2(x) and hence only one of these two

cases is possible for a given neuron.

2.2.2. Restrictions on 0 and o,

As shown in Figure 1, cross sections of ¢(x,gq) at constant ¢ can evolve in just two ways
as ¢ increases from 0. For g less than or equal to a certain value g,, ¢ is always positive for
X> 0, and for ¢ =gy, ¢ is always negative. Thus a function 0(q) can be defined on the interval
¢ €(q..9;) such that x=0(¢)>0 is the sccond zero of ¢ ~ i.c. $(08(¢),9)=0. The inverse func-

tion ¢=0"'(x) is given by:

A e
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07l(x) = 7. &)

The following theorem establishes a condition on ¢, and o, that allows ¢(x,q) at most one

zero on the domain x > 0 for any fixed valuc of q.

Theorem. For any fixed positive value of ¢, the function ¢(x,.¢)m a(x)—¢a(x), where o (x) and o,(x) are positive

and differentiable on the domain x>0, has at most one zero for x>0 il the Wronskian W (o ,(x ).0(x)) is either |

always positive or always negative for x> 0. ‘

|

Proof. For a fixed positive value of ¢, define a set of values x; on the domain x> 0 such that ¢(x; ,¢)=0forall i. If |
|

|

the sign of the partial derivative &, (x =x;) is constant for all values of x>0, then there can only be one zero of ¢ in

that domain. Note that ¢ =a,(x;)/a(x;) for all i. é,(s =3;) is shown to be equal to g{g—
|

L_92
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e (x =6(q))
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Hence the sign of ¢, (s —8(¢)) is the same as the sign of W (x). This completes the proof.

The (constant) sign of W (x) will be shown to determine the fcature abstracting property

'.v LB
»

{2
.

Lo
Y

of the neuron. If W(x) is always positive, the neuron generalizes (a "G-cell”) and if it is nega-

“‘."“ tive the ncuron tunes to a specific stimulus (an "S-cell”). This is demonstrated in Section 3.
>

The sign of 07(g) is constant for all valucs of ¢ €(g,,q,) and is also the same as those of W (x)
::l_-.j and &,(x=9(q)). This is because the inverse function 0"(.:) is also monotone increasing or
= decreasing:

3 . y

do7i(z) _ 0103010 _ w _ &,(09)

. ax ot el o )
t g In addition to the signs of ¢,, W(x), and 07g), there is a fourth quantity providing an
]

equivalent condition. Those three quantities are positive if and only if the logarithmic
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derivative (LD) of & (x) is greater than the LD of o4(x) for all x>0, and negative if and only
if the reverse condition holds. Thus the LD of one function is required to be consistently
higher than the other. The feature abstracting property of the neuron depends only on which

LD is greater.

2.2.3. Some allowed fanctions

Now consider functions o, and o, that can be expressed as a common function, only

with diffcrent scale parameters:

o(x) = u.;o’(i) ©

N
The sign of the Wronskian is now related to a functional of o(x) by the following corollary.
Note that the amplitude paramcters n; and p, are not important here since ncither the sign of

the Wronskian nor the logarithmic derivatives depend on them.

Corollary. The function ¢(x.¢)= 0 (x/n;)—q0o (s /n;) has at most one zero for x>0 if Lo (x)]> 0 for all x>0, where
Lio(x)]mx(o'(x))~xa{s)o“(x)~o(s)r(x). If this condition holds, then the sign of the Wronskian

W (o (x /n;).0 (x /1)) equals sgn(ny;—,).

Proof. 1f the LD of o(x /1) is monotone increasing in m, then the LD for the sigma function with a higher value of
7 will always be greater. Thus a derivative is taken with respect to n and the sign of the result is seen to be equal to

the sign of L[o(x)):

_d'[ ala/) [ z2ole)els)te(a () e (2)o(s) Y]
dn|no(x/m) (me(s))?

where s = i

n
The case for negative definite L (s) (for which the signs are opposite) can be ruled out by considering the behavior of
#(z.  for g=py/p, in the ncighborhood of x =0. In this case, ¢ has the same sign as o (x /n,)—o (s /). Hence, as x
iocreases from zero, ¢ takes on the sign opposite to m,—n;. Note that for 0<x <0(¢), the sign of ¢ must be oppo-

site to that of the Wronskian. Therefore only the case in which the LD increases with n applies, so the condition

L(s)> 0 is sufficient and the signs of the Wronskian etc. are equal to sgn(n;—n,).

o et .,




—y — y 3 - - —— -~
C Sl T A S el SIS AL s o e o et A i M T M M g Patis A e et Bt e e et .‘ PN T NTRT NI TR R TR T L R TR hd

-

Certain functions used to approximate the reiation between net somatic depolarization
and ncuronal firing rate (i.c. ¢ (x)) satisfy this corollary. Among such functions are In(1+x)

(Agin, 1964) and sigmoidal functions of the form:

X 1 8
= =
o= P C))
g
which approximate typical bounded threshold functions like that measured by Chapman (1966) »
in the crab and by Creutafelt et al. (1970) in cat retinal ganglion cells. Hence cither o, or o, N

might be related to the firing rate c.

For the case where o and o, are of the same form o(x /n), the sign of the Wronskian is

ST, [ PSR

scen to depend on which function has the greater scale factor m for the argument. Thus
sgn(W (x))=sgn(nz—n;), and so for n,;>n; the neuron tunes to a particular stimulus in its

stimulus environment, and for n,< n; the neuron is driven towards generalization.

. JV

2.3. Stability

Trajectories are drawn in the m —¢ plane for a one-synapse ncuron roceiving a constant

stimulus dg=1 (Figure 2). It can be seen that the neuron is always driven to a finite final state.

Note that if the initial value of ¢ is too large the final value of m will be zero (the ncuron loses
all responsivity).* The final states of the system are not perturbed by small amounts of signal
noise on the average. This is because the expected value of (m,g) is along a trajectory. Con-
sider noise uniform on the interval [-a,a]:

()

1 ¢ (dote)
E‘a'{.‘bx (med o.q0)m o€ Bmo(dg+e) de (9)

R

E

f

a> ( 1
5 &, (mod g,q0)m ole )

. . e . 1

Hence perturbations from equilibrium states are, on the average, driven back to the same -.4
equilibrium point in the m-q plane. X
‘Hence it may be advantageous to assume that ¢(r =0)=0. It shouid be noted however that this condition is :

not sufficient for muliti-pattern environments. Simulations indicate that the initial values of the synaptic weights N
mr be large in otder to guarantee a nontrivial final state. .‘
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3. Feature abstraction

The dependence of a neuron’s feature abstraction properties (specification or gencraliza-
tion) on the sign of the Wroaskian has already been mentioned. The degree of selectivity and
the quality of feature abstraction depend critically upon the structure of the stimulus environ-
ment in N-space. Therefore sclectivity is preciscly (albeit somewhat arbitrarily) defined and dis-
cussed in this section for a variety of pattern scts and the feature abstraction propertics of the

model arc analyzed.

3.1. Stimulus environments and selectivity

It is important to emphasize the role of the ncuron’s stimulus environment as a context
for both the development and testing of ncuronal response characteristics. Since each stimulus
can be rcpresented in the same N-dimensional space as the synaptic state m, a stimulus environ-
ment can be thought of as a probability density function on that space. Under a given learning

rule, the locus of stable (final) states m(z -~ = ) is determined by the stimulus environment.

Ncuronal selectivity is measured with respect to a rest eavironment, a sct of stimuli which
one must be careful to distinguish from the learning environmens. While the neuronal state may
undcrgo a measurable (adaptive) change under the influence of the Icarning environment
(indeed this is often the whole point), the test eavironment is used to perform a measwre on
the state. Even so, in the analysis of this model the learning environment is virtually identical
(except for the addition of a random noise term) to the test environment. Also, the inevitable

influence of the mcasurement on the state itszIf is idealized to be nil.

A ncuronal response function ¢ (m,L) can be calculated over any pattern sct E for a
given synaptic staie m. A piccise definition of scleciivity tor a general stimuius density func-
tion P (dE) was given by Biencnstock (1980). This can be paraphrased:

J c(mE)P (dE)
SmE) = 1--= = - e (10)

cmu cmu

vhere o ™ msax(c (m.E))
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Note that S (m,E) € [0,1) with zero indicating a uniform response across E and unity being an
idealized (zero-width) response peak. The function is illustrated (Figure 3) for a stimulus

environment that is characterized in terms of a single parameter.

For g given environment E, the selectivity S (m,E ) is a scalar function of the state m. In
Figure 4, lines of constant selectivity are plotted for an environment consisting of two discrete
patterns d' and d2. Restrictions on the synapses, such as the sign of m,, may prevent a cell
from realizing its optimal state. In such cases, simulations have indicated that the neuronal

state is driven to the limiting boundary.
3.2. Discrete pattern sets

3.2.1. Two patterns in two dimensions

This is the simplest case in which the feature abstraction properties of the model can be
analyzed. The necuronal state space is illustrated in Figures 5a and 5b. For each pattern there
exist two surfaces at which ¢=0. One surface is the plane. m-d=0 and the other surface
represents the relation m°d=0(g). At the intersections of the ¢(m-d',q)=0 surfaces and the

&(m-d?,q)=0 surfaces are equilibrium states where ¢ =0 for both patterns.

There are four distinct loci of equilibrium states. One consists of the g-axis (m =0), two
represent maximally selective states (one for cach pattern), and one is made up of states having
minimum (zero) sclectivity. In the case where the Wronskian is positive, only points belonging
‘0 the maximally selcctive equilibrium locus are stable and if the Wronskian is negative only

the minimally selective (nontrivial) cquilibrium points is stable.

For a given synaptic vector m, ¢ is positive for ¢<0 '(m-d') and g< 0 Ym'd?) - i.c.
below both surfaces med’ =0(q) (cf Figure 2). Above the two surfaces, ¢ is negative. Hence in
,‘w:h‘;i:ase the neuronal state is driven toward those surfaces and cventually ends up bctween
tiem, at their interscction (zero selectivity), or on the g-axis (m = 0). These cases are con-

sidered below.
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Case 1: 0 '(m'd")>¢> 07'(m'd?). The argument for this case can also be applied to the

ST et s

) case where d! and d? are reversed. Here ¢(m-d!)> 0 and $(m*d?)<0, so thc response m-d! tends

(e ]

to increase and the responsc m-d? tends to decrease. This drives the state toward minimum
selectivity (i.c. toward m-d'=m-d?) if md'<m-d?, and toward maximum sclectivity (in this case
toward m-d?=0) if m-d'>m-d>. Therefore the feature abstraction property of the neuron
depends on the sign of 8(¢) (and heace on the signs of W (x) and é,(x =0(q)) as shown ecarlier
in (5)).

Case 2: m'd'=m*d?=0(g). In this case the neuron is in a minimum selectivity equilibrium
state and so the stability of the state must be considered. Any noise in the stimulus, response,
or plasticity function will perturb the state from equilibrium. By the above arguments it is
seen that an S-cell will be driven away from this locus and a G-cell back toward it.

Case 3: m'd'=m'd®>=0 (the q-axis). The g-axis is a locus of trivial (zero response to all
stimuli) states which is stable for ¢=07'(x =0). However it is never reached (again see Figure
2) if the initial value of ¢ is small (¢(r =0) << 0~!(x =0)).

m-plane projections of numerically evaluated trajectories arc shown in Figure 6 for 2-

pattern environments.

v, l"i: LAt

3.2.2. Linear independence

A lincarly indcpendent set of K stimulus patterns presented to a neuron stochastically is
trcated as an ideal case, since the model can function perfectly in this situation. If each pat-

tern is presented with non-zero probability, then neurons of both types will asymptotically

approach their optimal selectivitics: zero for G-cells and 1-1/K (the maximum) for S-cells.

2 ) ~R

While this statcment has not been proven, it is strongly supported by computer simviation.

CN
PRSI 2V

These ideal final statcs are possible for a linearly independent stimulus environment and only

il T

- Y

for such an environment. This can be seen by considering the synapse space. The conditions

LARLAS
. AmEmas

wd=0 for K ~1 patterns and m°d> O for the last one (maximum eelectivity) can only be simul-

taneously satisfied only if all X patterns are independent. Similarly, linear independence is

required to reach zero selectivity nontrivially - i.c. to satisfy the condition that m'd be l
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constant for all environmental stimuli d.

An important feature of the model can be scen in such an environment (and provea for 2
patterns), namely that the neurons (asymptotically) acheive optimal sclectivity even if the pas-
terns are not presented with unif orm probability. This is perhaps more impressive with respect to
the generalizing neurons. A scheme whereby the synapscs simply average the stimuli over time
will cxtract the most common feature components according to the probability distribution.
However, in this model the most common feature component among the individual stimuli is

extracted.

3.2.3. Linear dependence

In general, the above "ideal” final states cannot be do not exist for an environment in
which the stimuli are not indepcndent. Nevertheless, both cell types are driven toward optimal
states under this condition. For S-cells, a high selectivity is attained except under overwhelm-
ing circumstances, such as the situation in which all stimulus patterns differ only in their mag-
nitude.? If all stimulus components are assumed to be positive, it is even difficult to design an
environment under which the G-cell cannot reach a low-selectivity state. This is because for
patterns having little in common (and therefore not very "generalizable”), all the synapses can
simply grow very large so that just about any stimulus evokes a high response. The principal
danger in this situation is overgeneralizarion: ideally, a G-cell will only respond with low selec-

tivity as measurcd across its stimulus environment.

3.3. Continuoas pattern sets

Certainly not all stimulus scts are discrcte. For example, physical stimulus feature dimen-
sions are aimost all continuous siuce they are intensity measures. In this scction continucus

stimulus environments that have a periodic dependence on one or two parameters are dis-

’Snch pattern sets can be thought of as a single psttern, in that the informational content of a stimulus is
contained in the re/ative values of the componeats. Thus the direction of a vector (stimulus or synaptic)
is sssociated with information and the magnitude with intensity. Gati and Tversky (1982) relate these to
the “qualitative” and "quantitative” aspects of a stimulus. Note that to incorporate this notioa into the
preseat modd would require that the operant definition of selectivity be modified.

A
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cussed. This is done as an approximation to a visual environment consisting of oriented con-
trast edges where stimulus oriensation is the varying parameter. Because they have beea widely
used to measure the sclectivity properties of neurons in striate cortex, such environments are

useful for comparison of the model with experiment.

3.3.1. Periodicity In one parameter

The behavior of the model in an environment varying periodically in a single parameter
provides a good illustration of how the model functions. Such environments map onto closed
loops in N-space. Here these are assumed to be “reasonably’ convex so that if two patterns are
close in the stimulus space, then they are also close in terms of the environmental parameter
(the converse holds for a continuous environment by definition). The principle of parallel
modification operates in such an environment such that as the various patterns stimulate the
cell they have the following cumulative effect. The selectivity-maximization property of the S-
cell functions by "encouraging” patterns that cvoke responses greater than 6(g) and “discourag-
ing” patterns that evoke smaller responses (upper part of Figure 7). As ¢ varies according to
(2), the threshold and the response converge such that some responses lic above the threshold
and others below. The neuronal response curve then becomes "separated” (i.c. the difference
between the minimum and maximum response increases) about the threshold 6(¢). In the
‘swer part of Figure 7, the reversc process is seen to drive the response curve toward low selec-

tvity.

3.3.2. Perlodicity in two parameters

A pattern sct periodic in two independent parameters has a more complex structure. The
cnvironmental topology progresses from a closed loop to a torus with the dependence on an
additional parameter. The behavior of the model has not been trcated analytically, but noari-
gorous results have been obtained by numerical methods (Figure 8). These simulations indicate
that the response surface of a G-cell becomes flat 2nd that of an S-cell becomes peaked -~ i.c.

the ccll types respectively seck minimum and maximum selectivity over borh parameters.
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4. Discussion

4.1. q as a time average over x(f)

This model is an extension of the Bienenstock et al. (1982) theory for selectivity maximi-

:
¢
2
.

5

zation. In that theory the function ¢ is postulated to be a function of the instantancous
response ¢ and the mean response ¢. For a given value of ¢, ¢ is negative for ¢ below a cer-
tain threshold value 0 and positive for ¢ >0, where 0 depends on &. The system is stable for

functions 8(Z) that increase in a “faster-than-lincar” fashion with & (e.g. 8(¢)=¢" ; p>1).

A more direct extension of that theory to selectivity minimization is possible (Muaro,
1983), by inverting the requirements on the sign of & and on the form of 0 so that it is
*slower-than-linear” in & (ie. p<1). Hence the important mathematical conditions on the
model appear to be that ¢ change sign once as a function of the response and that the value 8
vary temporally with the response according to a function which must satisfy certain condi-
tions. The feature abstracting property of a given ncuron then rclics on the signs of two
paramsters, namely é.(c =0(F)) and p—1. Of the four possible combinations, one gives

specification, one gives gencralization, and the others do not converge to stable final statcs.

Hence the following condition is imperative: sgn(é.(c =0(F)) = sgn(p —1). The interdepen-

dence of these two parameters is not sc artificial in the approach taken by the present paper. ]

It has been shown that &, (x=6(q)) and 07(q) are related (5). The success of the model .
and its similarity to the theory of Bicnenstock et al. depend on ¢(r) playing the role of &. By

integrating (2b), one can sce that g, like &, is a time average of a measure of the postsynaptic

activity:
f ! .i
Bf 20 s e e~ ) R U 11 G i . ($))) :
q(') = qof + B_‘;C ! oZ(X("))x(")d" :l

X ¥ T ¥ X X -
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Note that the first term decays with time.
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4.2. Visual cortex

4.2.1. Simulation of experiments

Since this model is a direct descendant of the theory of Bienenstock et al. (1982) for
selectivity maximization in visual cortex (sece Section 4.1), it comes as no surprise that the
scheme for the S-cell explains the same body of physiological data. Computer simulation indi-
cates that the two theories behave nearly identically, from a qualitative standpoint, in several
variously manipulated visual environments (c.g. normal rearing, monocular and binocular
deprivation, and reverse suture). However results differ for simulation of the artificial stra-
bismus paradigm. A toroidal environment (section 3.3.2) is used to describe strabismic input.
Recall that the S-cell tunes independently with respect to both parameters ~ i.c. it develops
high specificity in both cyes, but not necessarily to a common pattern. In the Bienenstock et
al. formulation, such an environment drives a neuron to a monocular state (Munro, 1983).
That is, tuning is accomplished with respect to one of the two parameters. These results are
purely empirical and have not been derived, so it is conceivable that the behavior of either or
both modcls in a noncorrclated binocular pattern space depends on some parameter(s). Data
from Hubel and Wiescl (1965) suggest that strabismic rearing results in fewer binocular cells,
and thus supports the scheme of Bienenstock et al. as a model for visual cortex neurons. On
the other hand, Blakemore and Van Sluyters (1974) report the existence of binocular ncurons

with a high orientation disparity between the two eyes.

4.2.2. Contrast enhsncement

It is generally accepted that the projection from the principal visual input (the lateral gen-
iculate nucleus of the thalamus) to striate cortex is overwhelmingly, and perhaps exclusively,
excitatory. Inhibitory influence is therefore thought to be mediated by cortical interneurons.
Figure 9 presents a scheme which is in accordance with these observations. A set of neighbor-
ing neurons is shown that share a common set of excitatory afferent fibers. A variety of S-cells

serve to tune to a corresponding sclection of environmental stimuli, whereas fewer G-cells are
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'rcquired (perhaps only one).

By inhibiting all the S-cells in this "cluster”, the G-cell can increase their selectivities.
Inhibition by a G-cell raises the excitation threshold of an S-cell uniformly in as much as the
response of the G-cell is uniform across the environment. A similar circuit has becn proposed
by Grossberg (1976). He proposes a scheme in which the inhibitory interneuron receives inputs
from the surrounding feature detectors. The resulting response is of minimal selectivity to the

extent that the input weights are equal.

Secondary evidence for such a circuit is found in the visual cortex of macaque. Hubel
and Livingstone (1982) and Tootell et al. (1982) have found periodic clusters of non-selective
cells centered in ocular dominance columns. Also, Hendrickson et al. (1981) report a similar
distribution for the enzyme glutamic acid decarboxylase (GAD) which synthesizes the inhibi-
tory necurotransmitter GABA. They have found localized GAD-rich areas that run parallel to
ocular dominance columns. An examination of the fine structure of the axon terminals of

low-selectivity neurons would directly test the hypothesis that they are inhibitory.

4.3. System organization

A conjecture can now be made explicit in terms of four neuronal types, defined according
to their optimal sclectivities (minimum or maximum) and their influence on other neurons
(cxcitatory or inhibitory), namely that a circuit can be constructcd from these four neuronal
types (S+,S',G+.G') that will cvolve to classify any stimulus set in tcrms of similarities and
differences. That is, such a neural network might sclf-organize such that a taxonomic represen-
tation of the environment is constructed. This hypothetical network is not easily rcalized.
The problem is to discover an architecture that provides an appropriate context for each ncu-

ron. Since this problem has not been solved, let us consider how it might be approached.

An initial step is to investigate the properties of small local neuron circuits or modules as
discussed by several authors including Mountcastle (1978) and Szentagothai (1975). The con-
trast enhancement scheme in Figure 9 is a candidate for such a functional unit. The problem

of bo™ these modules might be arranged to form larger components must also be eventually
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addressed. At cach level the circuits are presumably genetically coded structures, within which

individual neurons adapt to informational aspects of their respective stimulus environments.

Consider a system organized in a hierarchical fashion, reflecting progressively complex per-
ceptual stages (e.g. sensation - rccognition - association - cogaition ...). It would be a mistake
to assume that these stages lic in a strictly serial path since system processing is certainly paral-
lel to a certain degree. The combined hierarchical/parallel low of information in the visual sys-
tem has been recently examined by Van Essen and Maunsell (1983) in terms of so-called “func-

tional streams”.

The nature of the stimulus environments at successive stages of neural processing prob-
ably becomes increasingly discrete. Shepard and Podgorny (1975) point out that symbolic
stimuli are discretely coded while physical (nonsymbolic) stimuli vary continously along one or
several dimensions: “For, whereas we can continuously shift a color (for example, blue) in
brightness, hue, and saturation until it becomes as similar as we wish to any other color (for
example, green), we cannot continuously deform a word ’blue’ to another word ’green’ without
passing through intermediate configurations that are not words at all.” Thus it is expected that
inputs to the higher (more "gnostic”) stages are more distinctly scparated than early (sensory)
input patterns. Inhibition is a powerful tool for separating patterns (see section 4.2.2) and as

such may play an important rolc in the formation of discrete (symbolic) representations.
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Figure Captions

Figure 1. Functions go,(x), 0;(x), and &(x ) are plotted against x for two values of ¢ (¢;<g¢>) in
three situations. g0y and o, are shown above and ¢ is shown below. a q,<gq, ; ¢,>4,. b Both values
of ¢ in the interval q€(q,.9,) for a casc where the Wronskian W (0,0,) < 0. ¢ The same for
W(c,,0;) > 0. (Sec theorem in text). Note that the sequence of zero crossings for &(x.q,) and

&(x ,97) in ¢ is opposite to that in b.

Figure 2. Parabolic trajectories given by dg/dm = Bm, a simulation of a one-synapsc neuron receiving
constant input dg = 1. Stabie equilibrium states are indicated by ®. Note that states with g(¢=0)<gq,
arc driven to nontrivial (m # 0) final states. Functions o; of the form (6) were used for the two cascs:

a M2> g and b < ;.

Figure 3. This response curve illustrates the definition of sclectivity given by (10) for a one-parameter
() stimulus environment. The domain of w together with the response range (zero to the maximum
M) determine a rectangle. The fraction of this rectangle which does not liec below the response curve is

the sclectivity of the response. (From Bienenstock et al., 1982, with permission)

Figure 4. Lines of constant selectivity for two 2-pattern cnvironmcem:s, which have a maximum
sclectivity of 0.5 (1-1/K for X patteras). Motc that therc is a line of maximum s.lectivity orthogonal
to cach pattern and that the line of zero sclectivity is orthogonal to the difference between the
patterns. a if the two patterns have a common norm, the locus of zero-selectivity lies midway between
the patterns. b if they have different norms, the isoselectivity contours are skewed toward the weaker

.
stimulus.
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Figure 5. Curved surfaces give loci of nontrivial equilibria with respect to cach of the stimuli in the 2-
pattern cnvironment d'=(1,0), 4°=(0,1). Each surface is defined by translating the curved lines in
Figure 2, in the dircction orthogonal to the planes in which they lie. Assuming q(r =0) is sufficiently
small, the neuronal state converges to one of the following lcci, cach defined as the intersection of a
$(m-d'=0) surface and a db(m-d’>=0) surface. a S-cell: ¢; or c;, contours defined by maximally selective
states satisfying m'd=0 for one pattern and ¢=0"'(m'd) for the other. b Gcll: ¢y,

(m-d'=m-d>=0(q)), a contour consisting of minimally selective states.

Figure 6. m-plane projections of trajectories are shown for the two-pattern environm.ents of Figure 4:

common norm - a S-cell: W >0, b G-cell: W <0 ; different norms - ¢ S-cell, d G-cell.

Figure 7. Bchavior of the model is shown in an environment that is periodic in one paramcter. If the
response generated by a particular stimulus gives a positive value for &, then the resulting synaptic
potentiation incrcases the response function over all patterns. The increase is @ maximum for patterns
in the samc dircction as the stimulus. This illustrates the nction of parallel modification (scction
2.2.1). With sufficicnt exposure to the environment, the response curve thus becomes moximally

selective for W > 0 (upper figure) or minimally sclective for W < 0 (lower figure).

Figure 8. An environment that varics periodicaily over two independent parameters drives a initial
random stzie having the responsce surface shown in a to the final state b for W >0, and to e tor W < (.

The stimulus set consisted of 400 patterns in a 20-dimensional space.

Figure 9. Contrast enhancemcnt may be a primary task of generalization ncurons. Hcre, scveral
neurons share a sct of affcrents and can evolve such that the S—cells prefer variou. patterns while the

G-cclls provide inhibition uniformly across the environment, thus suppressing pactially excited S-cells.
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This circuit permits Sells to attain much higher selectivitics even with positive semidefinite input

weights. @ : excitatory synapses ; —| :-inhibitory synapses.
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